REGISTER

FR
Search
×
FR

Placeholder headline

This is just a placeholder headline

API SPEC 14L: Lock Mandrels and Landing Nipples : Reaffirmed

$

273

BUY NOW

Placeholder headline

This is just a placeholder headline

API SPEC 20F: Corrosion Resistant Bolting for Use in the Petroleum and Natural Gas Industries : Reaffirmed

$

169

BUY NOW

Placeholder headline

This is just a placeholder headline

API TR 5NCL Nickel Content Limits for API 5CT Sour Service Products

$

149

BUY NOW

Placeholder headline

This is just a placeholder headline

API SPEC 19ICD: Inflow Control Devices : Reaffirmed

$

189

BUY NOW

Placeholder headline

This is just a placeholder headline

API MPMS CH 23.2: Reconciliation of Liquid Tank Car(s) Quantities : Reaffirmed

$

218

BUY NOW

Placeholder headline

This is just a placeholder headline

API SPEC 16A: Specification for Drill-through Equipment

$

322

BUY NOW

Placeholder headline

This is just a placeholder headline

API RP 13B-2: Field Testing Oil-based Drilling Fluids wA1

$

388

BUY NOW

ISO 17091:2013

ISO 17091:2013 Workplace air – Determination of lithium hydroxide, sodium hydroxide, potassium hydroxide and calcium dihydroxide – Method by measurement of corresponding cations by suppressed ion chromatography

CDN $273.00

Description

ISO 17091:2013 specifies a method for the determination of the time-weighted average mass concentration of lithium hydroxide (LiOH), sodium hydroxide (NaOH), potassium hydroxide (KOH), and calcium dihydroxide [Ca(OH)2] in workplace air by collection of the particulate hydroxides on a filter and analysis of the corresponding cations using ion chromatography.

For aerosol sampling, the method is applicable to the personal sampling of the inhalable fraction of airborne particles, as defined in ISO 7708, and to static (area) sampling.

The method is applicable to the determination of masses of 0,005 mg to at least 2,5 mg of lithium per sample and 0,01 mg to at least 5 mg of sodium, potassium, and calcium per sample.

The concentration range of particulate LiOH, NaOH, KOH, and Ca(OH)2 in air for which the measuring procedure is applicable is determined by the sampling method selected by the user. For a 1 m3 air sample, the working range is approximately 0,002 mg m‚àí3 to at least 20 mg m‚àí3 for all four hydroxides. For a 30 l air sample, the lower limit of the working range is approximately 0,1 mg m‚àí3 for all four hydroxides.

The procedure does not allow differentiation between the hydroxides and their corresponding salts if both are present in the air. If the cations are present alone in the form of hydroxides, the method is specific for these basic compounds. In other circumstances, the results obtained represent the highest concentration of the hydroxides that could be present in the sampled air.

Edition

1

Published Date

2013-09-11

Status

PUBLISHED

Pages

28

Language Detail Icon

English

Format Secure Icon

Secure PDF

Abstract

ISO 17091:2013 specifies a method for the determination of the time-weighted average mass concentration of lithium hydroxide (LiOH), sodium hydroxide (NaOH), potassium hydroxide (KOH), and calcium dihydroxide [Ca(OH)2] in workplace air by collection of the particulate hydroxides on a filter and analysis of the corresponding cations using ion chromatography.

For aerosol sampling, the method is applicable to the personal sampling of the inhalable fraction of airborne particles, as defined in ISO 7708, and to static (area) sampling.

The method is applicable to the determination of masses of 0,005 mg to at least 2,5 mg of lithium per sample and 0,01 mg to at least 5 mg of sodium, potassium, and calcium per sample.

The concentration range of particulate LiOH, NaOH, KOH, and Ca(OH)2 in air for which the measuring procedure is applicable is determined by the sampling method selected by the user. For a 1 m3 air sample, the working range is approximately 0,002 mg m‚àí3 to at least 20 mg m‚àí3 for all four hydroxides. For a 30 l air sample, the lower limit of the working range is approximately 0,1 mg m‚àí3 for all four hydroxides.

The procedure does not allow differentiation between the hydroxides and their corresponding salts if both are present in the air. If the cations are present alone in the form of hydroxides, the method is specific for these basic compounds. In other circumstances, the results obtained represent the highest concentration of the hydroxides that could be present in the sampled air.

Previous Editions

Can’t find what you are looking for?

Please contact us at: