REGISTER

FR
Search
×
FR

Placeholder headline

This is just a placeholder headline

API SPEC 14L: Lock Mandrels and Landing Nipples : Reaffirmed

$

273

BUY NOW

Placeholder headline

This is just a placeholder headline

API SPEC 20F: Corrosion Resistant Bolting for Use in the Petroleum and Natural Gas Industries : Reaffirmed

$

169

BUY NOW

Placeholder headline

This is just a placeholder headline

API TR 5NCL Nickel Content Limits for API 5CT Sour Service Products

$

149

BUY NOW

Placeholder headline

This is just a placeholder headline

API SPEC 19ICD: Inflow Control Devices : Reaffirmed

$

189

BUY NOW

Placeholder headline

This is just a placeholder headline

API MPMS CH 23.2: Reconciliation of Liquid Tank Car(s) Quantities : Reaffirmed

$

218

BUY NOW

Placeholder headline

This is just a placeholder headline

API SPEC 16A: Specification for Drill-through Equipment

$

322

BUY NOW

Placeholder headline

This is just a placeholder headline

API RP 13B-2: Field Testing Oil-based Drilling Fluids wA1

$

388

BUY NOW

API TR 13TR1

API TR 13TR1: Stress Corrosion Cracking of Corrosion Resistant Alloys in Halide Brines Exposed to Ac

CDN $242.08

SKU: 87d2e1b36b66 Category:

Description

To understand the effects of brine compositions on the CRAs, a joint industry project was formed under the auspices of the American Petroleum Institute (API). It has been known as the CRAs in Brine Testing Program. Under its auspices, work has been underway for a number of years on understanding the interaction of brine chemistry and CRAs. The current paper evaluates the SCC risks of a range of CRAs in various halide brine compositions for the case of exposure to acidic production gas (CO2+H2S). Also evaluated are SCC risks due to air exposure. However, the testing became focused on a group of martensitic stainless steels alloyed with Ni and Mo, that are collectively referred to as modified 13Cr martensitic SS, or alternatively in some publications as super (S13Cr) martensitic SSs. Most tests evaluated the as-received brine, excluding proprietary additives such as corrosion inhibitor or oxygen scavengers. For completeness and comparison, test results provided by member companies in the

Edition

1

Published Date

2017-11-14

Status

Current

Pages

39

Language Detail Icon

English

Format Secure Icon

Secure PDF

Abstract

To understand the effects of brine compositions on the CRAs, a joint industry project was formed under the auspices of the American Petroleum Institute (API). It has been known as the CRAs in Brine Testing Program. Under its auspices, work has been underway for a number of years on understanding the interaction of brine chemistry and CRAs. The current paper evaluates the SCC risks of a range of CRAs in various halide brine compositions for the case of exposure to acidic production gas (CO2+H2S). Also evaluated are SCC risks due to air exposure. However, the testing became focused on a group of martensitic stainless steels alloyed with Ni and Mo, that are collectively referred to as modified 13Cr martensitic SS, or alternatively in some publications as super (S13Cr) martensitic SSs. Most tests evaluated the as-received brine, excluding proprietary additives such as corrosion inhibitor or oxygen scavengers. For completeness and comparison, test results provided by member companies in the

Previous Editions

Can’t find what you are looking for?

Please contact us at: