REGISTER

FR
Search
×
FR

Placeholder headline

This is just a placeholder headline

API SPEC 14L: Lock Mandrels and Landing Nipples : Reaffirmed

$

273

BUY NOW

Placeholder headline

This is just a placeholder headline

API SPEC 20F: Corrosion Resistant Bolting for Use in the Petroleum and Natural Gas Industries : Reaffirmed

$

169

BUY NOW

Placeholder headline

This is just a placeholder headline

API TR 5NCL Nickel Content Limits for API 5CT Sour Service Products

$

149

BUY NOW

Placeholder headline

This is just a placeholder headline

API SPEC 19ICD: Inflow Control Devices : Reaffirmed

$

189

BUY NOW

Placeholder headline

This is just a placeholder headline

API MPMS CH 23.2: Reconciliation of Liquid Tank Car(s) Quantities : Reaffirmed

$

218

BUY NOW

Placeholder headline

This is just a placeholder headline

API SPEC 16A: Specification for Drill-through Equipment

$

322

BUY NOW

Placeholder headline

This is just a placeholder headline

API RP 13B-2: Field Testing Oil-based Drilling Fluids wA1

$

388

BUY NOW

ISO 12219:2013

ISO 12219:2013 Interior air of road vehicles – Part 4: Method for the determination of the emissions of volatile organic compounds from vehicle interior parts and materials – Small chamber method

CDN $173.00

Description

ISO 12219-4:2013 specifies a qualitative and quantitative analytical method for vapour-phase organic compounds (volatile and some semi-volatile) released from car trim materials under simulated real use conditions using small emission test chambers (small chamber). Small chambers are intended to provide a transfer function to vehicle level emissions. This method is intended for evaluating new car interior trim components but can, in principle, be applied to used car components.

Target compounds include VOCs (conventionally defined as organic compounds in the volatility range n-hexane to n-hexadecane) and volatile carbonyl compounds such as formaldehyde. The specified analytical procedure for VOCs is ISO 16000‚Äë6 and for formaldehyde and some other light carbonyl compounds is ISO 16000‚Äë3.

ISO 12219-4:2013 is complementary to ASTM D5116 and VDA 276, and provides third party test laboratories and manufacturing industry with an approach for: a) identifying the effect of real use conditions on specific VOC emissions data; b) comparing emissions from various assemblies with regards to specific VOC emissions; c) evaluating and sorting specific assemblies regarding specific VOC emissions data; d) providing specific VOC emissions data to develop and verify a correlation between material level methods and the vehicle level method; e) evaluating prototype, “low-emission” assemblies during development.

Edition

1

Published Date

2013-04-10

Status

PUBLISHED

Pages

16

Language Detail Icon

English

Format Secure Icon

Secure PDF

Abstract

ISO 12219-4:2013 specifies a qualitative and quantitative analytical method for vapour-phase organic compounds (volatile and some semi-volatile) released from car trim materials under simulated real use conditions using small emission test chambers (small chamber). Small chambers are intended to provide a transfer function to vehicle level emissions. This method is intended for evaluating new car interior trim components but can, in principle, be applied to used car components.

Target compounds include VOCs (conventionally defined as organic compounds in the volatility range n-hexane to n-hexadecane) and volatile carbonyl compounds such as formaldehyde. The specified analytical procedure for VOCs is ISO 16000‚Äë6 and for formaldehyde and some other light carbonyl compounds is ISO 16000‚Äë3.

ISO 12219-4:2013 is complementary to ASTM D5116 and VDA 276, and provides third party test laboratories and manufacturing industry with an approach for: a) identifying the effect of real use conditions on specific VOC emissions data; b) comparing emissions from various assemblies with regards to specific VOC emissions; c) evaluating and sorting specific assemblies regarding specific VOC emissions data; d) providing specific VOC emissions data to develop and verify a correlation between material level methods and the vehicle level method; e) evaluating prototype, "low-emission" assemblies during development.

Previous Editions

Can’t find what you are looking for?

Please contact us at: